Etiquetas
jueves, 9 de diciembre de 2010
A x T - Noticias 09 - El sistema educativo compromete el crecimiento argentino
Acaba de conocerse un estudio internacional sobre la calidad educativa en Argentina. El estudio, que cada 3 años es dirigido por la Organización para la Cooperación y el Desarrollo Económico, refleja que sobre 65 países analizados, Argentina ocupó el puesto 58, mientras que 3 años atrás estaba en el puesto 53, y su puntaje se redujo de 418 a 398 sobre 1000 puntos máximos. El estudio, sobre alumnos de 15 años, evalúa el grado de comprensión de lectura, matemáticas y ciencias
La Nación, 9 de diciembre de 2010
Leer el artículo completo
sábado, 4 de diciembre de 2010
A x T - Noticia 08 - Calidad educativa, el gran desafío
Aunque se ha avanzado en la cobertura educativa, falta ahora elevar el nivel de excelencia para alumnos y docentes.
Hoy pensar en la educación ideal requiere replantearse el modelo de sociedad en la que queremos vivir y que se eduquen nuestros hijos: aquélla en la que estén integradas las políticas de salud, vivienda, empleo e inclusión social, además de una igualitaria distribución de los fondos coparticipables desde el Estado hacia las provincias. En tanto esto no se logre, será difícil hablar de calidad educativa para todos.
La Nación, 4 de diciembre de 2010
Leer el artículo completo
miércoles, 27 de octubre de 2010
A x T - Noticia 07 - Publicación de nuestro artículo en Revista Novedades Educativas. Octubre 2010
María del Carmen Chiappero, María Alejandra Pellegrino, Inés María Bomone
¿Por qué presenta dificultades la enseñanza de la trigonometría? ¿Qué aspectos de la trigonometría debemos priorizar? ¿Cuál es el sentido que tienen estos conocimientos? Se presenta una situación problemática en la que puede observarse cómo los estudiantes se apropian de un nuevo contenido matemático (en este caso la gráfica de la función seno) a partir de estrategias de resolución personales en las que utilizan contenidos abordados previamente en clase.
Los invito a leer el artículo completo en la revista Revista Novedades Educativas Nº 238 del mes de Octubre de 2010
Además, encontrarán en ella los siguientes contenidos:
Escuelas y contextos locales. Adecuaciones a la realidad socio-cultural
Una escuela, muchas escuelas. O. Zattera, G. Favilli
Nuevos escenarios para el desempeño del rol docente. P. Ojeda
Redes y desarrollo local. S. Mercadé Mac Kion, V. Ceresani
Escuela rural: ¡presente! Diana Maxenti
Definiendo el canon regional. Natalia Babaglio, Daniela Dagoberto
Nuevas tecnologías para promover el desarrollo local. Mariel Heiland
Lo local y lo universal en una escuela rural. Mario Sadras
Maestros rurales: proyectos de trabajo. A.M.R.A.
Imágenes y relatos del camino recorrido. Cinthia Rajschmir
Matemática. Secuencias y estrategias didácticas
Fracciones y números racionales. Alejandra del Valle Alarcón
Aprender matemáTICa. Cristina Velázquez
Proyecto e-learning matemático. María Gabriela Galli
Enseñar propiedades de los cuadriláteros incorporando el trabajo con TIC. Mirta Inocenti
De los cuadriláteros a la función seno. M. C. Chiappero, M. A. Pellegrino, I. M. Bomone
Los fractales. Omar Malet
Secuencias didácticas en matemática. M. E. Paolone B.
Enseñar funciones en situaciones reales. C. Garelik, M. A. Diez, C. Brito
Los contenidos matemáticos en el campamento escolar. Emiliano Alonso
Matemática en clave de juego. E. Brinnitzer, G. Fernández Panizza, M. F. Gallego, Grupo Ludomateca
Maestros narradores
El latido de una idea. Claudia Sciutto
Formación docente
Experiencias didácticas orientadas a la formación de emprendedores. R. Paglilla, D. Pallarola, H. Luján, D. Paglilla, A. Zavanella
Fascículo Novedades con TIC Nº2
Leer, escuchar y hablar. Actividades con tecnología
viernes, 8 de octubre de 2010
A x T - Noticia 06 - Hablan en el mismo lenguaje
Una especialista sostiene que la escuela debe incluir las nuevas tecnologías de la información y la comunicación.
Cree que la inclusión, la equidad, la calidad y la oportunidad de hacer a una escuela diferente se basan en estar más cerca de las necesidades de los chicos.
Leer el artículo
sábado, 2 de octubre de 2010
lunes, 13 de septiembre de 2010
A recoger manzanas
RECOMENDABLE: MOUSE DE ESCRITORIO (ES MÁS DIFÍCIL CON EL DE TECLADO).
Haga clic en ¡A jugar! y luego en la manzana. ¡Suerte!!!
domingo, 5 de septiembre de 2010
Las torres de Hanoi
1. Te invito a jugar a "las torres de Hanoi". Puedes elegir la cantidad de discos, con la que deseas jugar. Te recomiendo empezar con 3, e ir aumentando.
2. ¿Te animas a calcular cuántos movimientos, como mínimo, se deben realizar con 3 discos? ¿Y con 4 discos? ¿Con 5 discos? ¿Con 6 discos? ¿Y con "n" discos?
3. Si eres docente o estudiante del Profesorado, te propongo consultar la Propuesta Curricular de la Provincia de Córdoba, y responder: ¿Qué contenidos de MATEMÁTICA podrían aprender tus alumnos con este juego? ¿En qué grado/curso?
JUEGOS Disfruta las matemáticas
Memotest con adiciones, multiplicaciones, operaciones combinadas o álgebra. Con niveles Fácil, Medio, Dificil, y cronómetro para calcular el tiempo que tardas en completar el tablero.
Cálculos mentales: para agilizar tus cálculos con sumas, restas, multiplicaciones.
Al final, puedes elegir otros juegos.
domingo, 22 de agosto de 2010
A x T - Noticia 05 - Celulares, nuevos aliados en el aula
La Nación, 22/08/2010
Cuatro profesores de San Francisco Solano (provincia de Buenos Aires) crearon programas para trabajar la matemática en los móviles.
Al desarrollar programas informáticos que transforman a los celulares en un recurso didáctico en el aula, cuatro profesores de matemática pusieron en práctica el consejo que dice: si no puedes contra tu enemigo, únete a él.
ampliar información
sábado, 21 de agosto de 2010
A x T - Noticia 04 - Desarrollar capacidades
Clarín, 06/08/2010
“En la clase de matemática hay que trabajar por resolución de problemas ; pero muchísimos docentes han tenido una formación matemática muy distinta de la que tienen que enseñar”, resume Graciela Chemello, experta en esa materia de la Dirección Nacional de Gestión Curricular del Ministerio de Educación. Hasta hace dos décadas, esa preparación se ha basado “en la trasmisión de conceptos, procedimientos y enunciados, pero no en para qué, ni en cuánto se usa. Los chicos requieren ser formados en desarrollar capacidades , que les permitan emplear la matemática en las situaciones en que la necesiten”.
En los profesorados de primaria hay abundante material didáctico actualizado, pero no así en los de enseñanza media, cuenta Chemello. “Faltan muchos profesores de matemática que enseñen con esta lógica. Lleva un tiempo, y somos un poco difíciles de convencer”, admite.
“Siempre se la utilizó para seleccionar –entre los burros y los inteligentes, entre los que pueden y los que no–, según el resultado estuviera bien o no. Pero detrás de todo error del alumno hay una lógica; lo importante es fundamentar, para que cambie de opinión, y por eso hay que debatir con él. Hay distintas maneras de ver una misma cosa, pero en el debate se puede llegar a una conclusión común”.
A x T - Noticia 03 - La matemática, un problema que cuesta resolver en la escuela
"La matemática, un problema que cuesta resolver en la escuela"
Clarín, 06/08/2010.
Dicen que los docentes no renovaron la manera de enseñarla. Es la materia con peores notas y la que más adeudan los estudiantes para terminar la secundaria. Los alumnos tienen dificultad para la abstracción.
“Para estudiar matemática, el alumno tiene que desarrollar un trabajo intelectual, debe involucrase en una actividad de producción, y el punto de partida es la resolución de problemas –explica Liliana Broncina, especialista en matemática del Área de Evaluación del Ministerio–. Ante una situación nueva, en la que tiene que recurrir a sus conocimientos, muchas veces no puede relacionar con aquel concepto que necesita, o poner en marcha la estrategia que necesita para resolver la situación”.
Otro obstáculo es, precisamente, que “en la clase de matemática hay que trabajar por resolución de problemas ”, y muchos docentes se han formado en la materia con métodos ya perimidos, apunta Graciela Chemello, experta en matemática de la Dirección Nacional de Gestión Curricular.
A x T - Noticia 02 - La matemática es el gran cuco
"La matemática es el gran cuco"
La Voz del Interior, 05/08/2010
Las carteras educativas de las distintas provincias hacen grandes esfuerzos para mejorar la enseñanza de las matemáticas en los primeros niveles de la educación (primario y secundario). No obstante, a juzgar por los resultados, las metas están lejos de conseguirse.
En 2006, en las pruebas estandarizadas de matemática (Pisa) para alumnos de 15 años, Argentina quedó en el puesto 52, por debajo de Uruguay, Chile y México.
Marcelo Capello, economista de Ieral, plantea una serie de acciones para superar este déficit. Entre ellas, se pueden mencionar: fortalecer la formación docente y promover su especialización y actualización; revisar y actualizar permanentemente contenidos, materiales y métodos de enseñanza, y asignar una adecuada carga horaria; promover el método experimental, además de las clases magistrales; plantear iniciativas extracurriculares que logren atraer a los alumnos hacia la matemática y las ciencias.
A x T - Noticia 01 - Mayor inclusión educativa se asocia con resultados más bajos
"Mayor inclusión educativa se asocia a resultados más bajos"
La Voz del Interior, 08/08/2010.
Margarita Poggi, Doctora en Ciencias de la Educación y miembro de organismos y foros internacionales, remarcó que en Argentina y otros países latinoamericano se ha logrado el acceso masivo de la infancia a la escuela primaria pero falta mantener esos porcentajes en el Nivel Secundario y que se egrese con un NIVEL ACEPTABLE y satisfechos con la formación.
viernes, 20 de agosto de 2010
jueves, 15 de julio de 2010
AxT - P y S - 06: Representación de los Números Racionales
A partir de la consideración de los nuevos Diseños Curriculares de la Provincia de Córdoba para Matemática, del Ciclo Básico, versión 2010, se presenta esta propuesta didáctica relacionada con el quehacer matemático en el aula.
Si bien es una situación trabajada en primer año del Nivel Secundario, es posible adaptarla para 2º año y también para 6º grado de Nivel Primario.
La intervención del docente es fundamental a la hora de planificar su tarea, partiendo de los conocimientos previos de sus estudiantes, teniendo en cuenta que para "hacer" matemática en el aula se deben presentar verdaderos desafíos, problemas, y que se deben llevar a cabo las fases de Acción, Formulación, Validación e Institucionalización.
sábado, 3 de julio de 2010
AxT – I, P y S - 01: ¿Qué hay que saber hoy sobre MATEMÁTICA?
Actividades:
La especialista en Didáctica de la Matemática, Adriana Laura Díaz, nos habla de una CONSTRUCCIÓN SOCIAL y CULTURAL".
Algunas ideas que nos deja la autora:
"...¿Qué sabemos de esta ciencia y de qué modo la conocemos?, son preguntas que pueden ser repondidas desde muy diferentes enfoques...
...el hecho de que se enseñe matemática en la escuela responde a una necesidad a la vez individual y social: cada uno de nosotros debe saber un poco de matemática para poder resolver, o por lo menos reconocer, los problemas con los que se encuentra mientras convive con los demás...
Entonces, ¿qué hay que saber hoy de matemática?..."
1. Leer el artículo completo que se publica en Revista "El Monitor de la Educación" Nº 12. Mayo/Julio 2007. Ministerio de Educación, Ciencia y Tecnología de la Nación.
2. Realizar un debate, recuperando formas de aprendizaje de la matemática vivenciada como estudiante, en los niveles inicial, primario y secundario.
3. Diseñar propuestas para revertir el fracaso en matemática, que se observa en estudiantes de nivel primario y secundario.
4. Hacer un breve comentario en el blog.
AxT – I, P y S - 02: Reflexión: “El pequeño niño”
Actividades:
1. Leer las diapositivas de "El pequeño niño” que se presentan a continuación.
2.Analizar el rol de cada una de las docentes, el rol del alumno y qué lugar ocupa el saber en cada una de las clases relatadas.
3.Recordar su experiencia como estudiante y relacionarla con el relato. ¿Qué similitudes y diferencias encuentra?
4.Realizar una reflexión como futuro docente.
5.Escribir sus aportes en el blog.
AxT – I – 01: Conocimientos iniciales de los niños acerca del sistema de numeración
Actividades:
1. Observar atentamente el video referido a "las ideas de los niños y las niñas acerca del sistema de numeración", entrevista realizada a una niña de 5 años y medio. Autor: Txaro Franco. En la página: https://www.youtube.com/watch?v=AqlvoX1AzNA la autora Txaro Franco nos brinda detalles de su trabajo.
2. La maestra no intervino para orientar la respuesta, ya que se trata sólo de una situación de diagnóstico. Si Ud. fuese el/la docente y en clases siguientes se propone realizar intervenciones con el objetivo de hacer evolucionar el conocimiento, ¿qué intervenciones realizaría? Justifique su respuesta.
3. Realizar un instrumento para diagnosticar los conocimientos numéricos de los niños de 3, 4 y/o 5 años, teniendo en cuenta: conocimiento sobre el recitado de los números, conteo, utilización del recitado para formar una colección, el sucesor de un número, representación espontánea del número y usos del mismo.
4. Entrevistar a dos niños, y filmar la entrevista.
5. Editar un video con Windows Movie Maker para presentar al resto de los compañeros.
AxT – I – 02: Producción y reconocimiento de números y registros gráficos con información numérica
Actividades:
1. Leer y analizar la Propuesta para el Aula: Anotar y entender cuántos hay, del portal educ ar.
2. Diseñar un plan de clase para trabajar en la Sala de 5 años, teniendo en cuenta la propuesta anterior.
3. Gestionar la clase, haciendo un análisis didáctico a posteriori, indicando los aspectos positivos y negativos, así como las propuestas superadoras.
4. Presentar las producciones de los niños y niñas.
5. Realizar el análisis de las estrategias anteriores.
6. Escribir un comentario sobre la experiencia realizada, en el blog.
AxT – I – 03: Aprender matemática con software. Juegos con números
Actividades:
1.Ingresar al Cd 22 en línea de educ ar “Juegos con números. Aprender matemática con software”.
2.Leer y luego jugar.
3.Diseñar un plan de clase donde se incorpore esta situación didáctica. ¿Cómo organizaría la clase? ¿En qué momento se realizaría la validación y la institucionalización?
AxT – I – 04: La enseñanza y el aprendizaje de las nociones espaciales en el Nivel Inicial
Actividades:
1.Observar detenidamente el video: ¿Dónde está Bichi?
2.Responder:
a)¿Lo utilizaría Ud. en sus clases? ¿Por qué?
b)¿Qué tendría en cuenta Ud. al planificar una secuencia didáctica para la enseñanza de las nociones espaciales en la Sala?
c)¿Qué recursos didácticos utilizaría? Justifique la elección.
d)Diseñe un plan de clase para trabajar las nociones espaciales en la Sala de 5 años. Se sugiere la lectura y análisis de la propuesta de trabajo “¿Dónde están las figuras?” en Cd 24 de educ ar.
AxT – I – 05: La enseñanza y el aprendizaje de las mediciones en el Nivel Inicial
Actividades a realizar en equipo:
1.Leer el registro de una clase en el Nivel Inicial.
2.Analizar el registro a partir de los siguientes aspectos:
a)Las características de la intervención de la educadora para favorecer la reflexión y la búsqueda de soluciones a la situación planteada.
b)Las oportunidades brindadas por la educadora para que los niños explicaran sus procedimientos y confrontaran sus resultados.
5.Hacer recomendaciones dirigidas a la educadora que interviene en la situación analizada, tomando en cuenta la importancia que tiene su participación en la construcción de conocimientos sobre medición.
AxT – I – 06: Registro de cantidades
Actividades:
1. Leer y analizar Sistema de Numeración Decimal. Aportes de distintas investigaciones. En Capítulo II. González, Weinstein. La enseñanza de la Matemática en el Jardín de Infantes. Editorial Homo Sapiens.
2. Observar las siguientes diapositivas y realizar las actividades que se señalan al final.
AxT – P – 01: La enseñanza de la Geometría en la Escuela Primaria
Objetivos: Reflexionar acerca del lugar que ocupa la enseñanza y el aprendizaje de la geometría en la escuela primaria. Relacionar Espacio y Geometría. Analizar propuestas de enseñanza y aprendizaje.
Actividades:
1. Observar la entrevista a Horacio Itzcovich y Claudia Broitman, en los videos que se encuentran a continuación.
2.Responder:
a)¿Cuánto tiempo hace que la Geometría fue perdiendo espacio en la escuela primaria? ¿Qué se privilegió en los últimos años en la escuela primaria, dejando de lado la geometría?
b)¿Qué debe aprender un estudiante, futuro docente, durante la formación inicial como docente?
c)¿Qué problemas geométricos se deben trabajar en los primeros grados de la escuela primaria? ¿Por qué?
d)¿Es interesante que los estudiantes construyan? ¿Qué debe tener en cuenta el docente al proponer estas actividades? ¿Por qué?
e)¿Qué relación existe entre la enseñanza del Espacio y la enseñanza de la Geometría? ¿Cómo lo pueden trabajar los docentes?
3.Analizar la Actividad Nº 10 “Festival de figuras”, de “Para seguir aprendiendo” EGB 1, del Ministerio de Educación de la Nación.
4.Responder:
a)¿Qué contenidos se pretende que los estudiantes construyan?
b)¿Cuáles son las distintas actividades geométricas que desarrollarían los estudiantes al resolver dichas situaciones?
c)¿Lo trabajaría Ud. en el aula? ¿Por qué?
AxT – P – 02: Cálculo mental reflexionado
Actividad:
1.Ingresar a la página web interactiva "Fomento de cálculos mentales".
2.Seleccionar el campo numérico con el que desea trabajar: Números naturales, números y fracciones, o fracciones. Luego la operación que desee: suma, resta, multiplicación, etc. Y por último el nivel que considere.
3.Por último los alumnos presentarán las distintas estrategias empleadas para realizar cada uno de los cálculos. Esta etapa es muy importante para la confrontación y validación de las distintas producciones. Permite al docente institucionalizar las operaciones del campo numérico seleccionado, y las propiedades de las mismas.
4.Para 1º, 2º y/o 3º grado, analizar la propuesta “De compras” de educ ar.
5.¿Cómo la trabajaría con sus estudiantes?
Bibliografía sugerida:
- Matemática. Cálculo mental con números naturales. Apuntes para la enseñanza.Gobierno de la Ciudad de Buenos Aires. Secretaría de Educación.
- Matemática. Cálculo mental con números racionales. Apuntes para la enseñanza. Gobierno de la Ciudad de Buenos Aires. Secretaría de Educación.
AxT – P – 03: La multiplicación y la construcción del algoritmo
Objetivo: Diagnosticar conocimientos previos sobre la construcción de algoritmos.
Actividad: Resolver la siguiente situación problemática:
Bart tenía que resolver el siguiente problema: Hay que cargar en un camión, 45 cajas de 26 botellas cada una. ¿Cuántas botellas se llevarán en el camión?
Decidió realizar la siguiente operación:
a)¿Es correcto lo que hizo Bart? ¿Por qué dejó un espacio debajo del cero de 270?
b)¿Podría haber calculado mentalmente el resultado? ¿Cómo? (Escribe dos estrategias que podría haber empleado).
AxT – P – 04: El material concreto...¿asegura el aprendizaje de la Matemática?
Actividad:
1.Observar las siguientes diapositivas sobre el papel que cumple el uso del material concreto en las clases de Matemática.
3.Seleccionar un contenido de los Diseños Curriculares y diseñar una secuencia didáctica que corresponda al modelo de aprendizaje Incitativo y otra al modelo de aprendizaje Aproximativo/Apropiativo.
a)Señalar las diferencias, similitudes, ventajas y desventajas de cada uno.
b)Recuerde su paso por la escuela primaria y secundaria y describa una clase, indicando el modelo de aprendizaje que predomina.
4.Intercambiar las conclusiones en plenario, con el resto de los compañeros.
AxT – S – 01 : Importancia de la matemática
Actividad: Observar atentamente el video
Responder el cuestionario:
1. ¿Crees que es importante saber Matemática? ¿Por qué?
2. De acuerdo con el video “Donald en el país de las Matemáticas”:
a) ¿Quién es considerado el padre de la Matemática y la Música?
b) ¿Qué figuras geométricas se muestran?
c) ¿En dónde se utiliza la matemática, según el video?
AxT – S – 02: Juego: Las torres de hanoi
Actividad:
Las Torres de Hanoi es un juego que consta de 3 postes verticales y discos de distinto diámetro. El desafío consiste en realizar la menor cantidad de movimientos para trasladar “n” discos, desde un poste a otro. Se debe mover un disco a la vez y no se puede colocar un disco de mayor diámetro, sobre otro con menor diámetro, en ningún momento del juego.
1. Te invito a jugar. Puedes elegir la cantidad de discos, con la que deseas jugar. Te recomiendo empezar con 3, e ir aumentando.
2. ¿Te animas a calcular cuántos movimientos, como mínimo, se deben realizar con 3 discos? ¿Y con 4 discos? ¿Con 5 discos? ¿Con 6 discos? ¿Y con "n" discos?
3. Si eres docente o futuro docente, te propongo consultar los Diseños Curriculares, y responder: ¿Qué contenidos de MATEMÁTICA podrían aprender tus alumnos con este juego? ¿En qué grado/curso?
AxT – S – 03: Puntos y rectas notables del triángulo
Actividad:
1. Resolver la siguiente situación problemática, en pequeños equipos: “Se quiere colocar una antena de telefonía móvil que equidiste de tres localidades”. ¿Dónde se ubicará dicha antena?” Se sugiere descargar el software GEOGEBRA y utilizarlo para realizar distintas estrategias de resolución.
2. Analizar las estrategias diferentes.
3. Ingresar a la página interactiva, de Puntos y rectas notables del triángulo.
4. Realizar las actividades propuestas para cada uno de los contenidos: Mediatrices y Circuncentro, Mediana y Baricentro, Bisectrices e Incentro, Alturas y Ortocentro, Centros de un triángulo y Recta de Euler.
5. Extraer conclusiones.
6. Intercambiar opiniones con el resto de los compañeros.
AxT – S – 04: La generalización y el álgebra
1.¿Cuál de las dos propuestas, acuerda con lo prescripto por el Diseño Curricular de la Provincia de Córdoba, 2010? Justifique.
2.Teniendo en cuenta la propuesta que Ud. seleccionó:
a)¿Qué contenidos se trabajan de acuerdo con dicho Diseño Curricular? ¿En qué curso?
b)¿Qué objetivos se propone el docente?
c)¿Cómo organizaría la clase?
d)¿Cuáles serían las posibles estrategias de resolución de los estudiantes?
e)¿Cómo evaluaría a los estudiantes?
f)Proponga dos situaciones que presentaría inmediatamente a continuación de las anteriores.
II.Leer y analizar Leer y analizar “Las regularidades. Fuentes de aprendizajes matemáticos”, publicación del Grupo Patagónico de Didáctica de la Matemática.
a)Anticipe posibles estrategias de resolución de los estudiantes.
b)¿Qué errores cree que podrían cometer los estudiantes? ¿Qué intervención realizaría Ud. como docente, ante el error?
IV.Diseñe un plan de clase para trabajar en el Ciclo Básico, donde se trabaje la generalización y el álgebra, de acuerdo con los diseños curriculares.
AxT – S – 05: Resolución de problemas con “Sistemas de ecuaciones con dos incógnitas”
Actividades:
Se presenta a continuación una secuencia de situaciones didácticas para abordar Sistema de dos ecuaciones con dos incógnitas. Los alumnos construirán el concepto de sistema de ecuaciones y a través de la resolución de los problemas planteados abordarán distintos métodos de resolución. Además se propone la utilización del software WxMáxima, para la resolución de sistemas, ya que el objetivo principal es que los estudiantes sean capaces de resolver problemas significativos, pensar distintas estrategias y no resuelver ejercicios mecánicos sin sentido, donde interesa sólo el resultado.
WxMaxima puede realizar cálculos numéricos y simbólicos, con álgebra, trigonometría, análisis, estadística, etc., además de representaciones en dos y tres dimensiones. Es una herramienta para hacer y aplicar matemáticas, y para aprender y enseñar matemáticas. Este programa es software libre y se pueden conseguir versiones tanto para Linux como para Windows.
Es posible usar xMmaxima de una manera sencilla. Puedes descargar ambas versiones, Linux y Windows.
También puedes ver los distintos Videos Tutoriales de WxMáxima.
El cálculo de resultados de los sistemas, se propone realizarlo con las TIC, tratando de formar estudiantes que las utilicen correctamente.
Se sugiere trabajar además con Propuestas para el aula del Portal educ ar. Por ejemplo: "Las cajas de Juan".
AxT – S – 06: Enseñanza y aprendizaje de la función de 2º grado
Actividad:
Se realiza una propuesta para trabajar en el Nivel Secundario. Se propone a los estudiantes:
1.Resolver las siguientes situaciones problemáticas, en pequeños equipos (no más de cuatro integrantes).
2.Presentar las distintas estrategias de los equipos. Confrontar y validar.
3.El docente institucionalizará la función de 2º grado, características, distintos tipos de parábolas.
Problema 1
El precio de un espejo cuadrado depende de su tamaño y del marco de madera que necesita. El metro cuadrado de espejo cuesta $ 10 y el metro lineal de marco de madera cuesta $ 2.
a)¿Cuánto cuesta un espejo cuadrado de 1 m de lado con marco? ¿Cuánto cuesta un espejo cuadrado de 2 m de lado con marco? Con $ 882, ¿qué tamaño de espejo cuadrado con el marco, puedo comprar?
b)¿Cuál es la fórmula que permite determinar el costo (en $) de un espejo cuadrado con marco, en función de la medida (en m) de su lado?
c)Grafiquen la función obtenida en b) empleando el Geogebra, software de matemática libre, para enseñar y aprender. Pueden observar un Video Tutorial para graficar funciones en Geogebra, haciendo clic en el link, o al final de este aporte. Recuerden que deben introducir una función “y” con variable independiente “x”. Pueden cambiar la visualización ubicando el mouse sobre la función, realizando un clic sobre el botón derecho, seleccionando ZOOM y eligiendo 25%, 50% o lo que crean conveniente. También pueden seleccionar “Eje X : Eje Y” y seleccionar la escala más conveniente.
d)Analicen la gráfica obtenida y extraigan conclusiones.
Problema 2
Las funciones que están representadas por expresiones cuadráticas se denominan funciones cuadráticas. Por ejemplo: f(x) = x^2 representa una función cuadrática al igual que la expresión obtenida en el Problema 1.
Se solicita que se realicen las actividades propuestas en la página web interactiva, respondiendo todo lo solicitado.
AxT – S – 07: Cálculo mental reflexionado
Objetivo: Desarrollar el cálculo mental reflexionado a partir de juegos. Validar y discutir estrategias de cálculo mental (posterior al juego)
Actividad:
1.Ingresar a la página web interactiva "Fomento de cálculos mentales".
2.Seleccionar el campo numérico con el que desea trabajar: Números naturales, números enteros, números y fracciones, o fracciones. Luego la operación que desee: suma, resta, multiplicación, etc. Y por último el nivel que considere.
3.Por último los alumnos presentarán las distintas estrategias empleadas para realizar cada uno de los cálculos. Esta etapa es muy importante para la confrontación y validación de las distintas producciones. Permite al docente institucionalizar las operaciones del campo numérico seleccionado, y las propiedades de las mismas.
4.Antes o después de trabajar con la página interactiva, se propone realizar Cálculos mentales para el Ciclo Básico.
6. Diseñe una situación problemática para trabajar cálculos mentales y presente posibles estrategias que realizarían sus alumnos (al menos tres, distintas).
AxT – P y S – 01: La división como objeto de reflexión
El concepto de división entera no sólo es de gran importancia dentro de la matemática, sino también en la didáctica. Existen muchos aspectos para trabajar, algunos exceden el 2º ciclo.
Se propone a los estudiantes de las carreras de formación docente, que realicen las siguientes actividades:
1. Analizar los siguientes problemas e indicar cuántas divisiones se pueden encontrar en cada caso:
a) Encuentren una división en la que el divisor sea 25, el cociente 14, y el resto 23.
b) Encuentren una división en la que el divisor sea 25, y el cociente, 14.
c) Encuentren una división en la que el divisor sea 25, y el resto, 23.
d) Encuentren una división en la que el cociente sea 14, y el resto 23.
2. Sin hacer la cuenta, estimen la cantidad de cifras del cociente, en cada caso:
a) 3285 : 72 =
b) 427 : 98 =
c) 9585 : 12 =
3. Leer “Orientaciones para la enseñanza de la división en los tres ciclos de la EGB”. Provincia de Buenos Aires. Dirección General de Cultura y Educación. Subsecretaría de Educación, y responder:
a) ¿Es necesario que los niños y niñas resuelvan problemas de división desde primer grado? Justificar.
b) ¿Cuáles son los distintos tipos de problemas de división que se deben trabajar en la escuela?
c) ¿Existe alguna relación entre el cálculo mental y la construcción del algoritmo de la división? Justificar.
d) ¿Conoce otros algoritmos, distintos al tradicional, que se utilizan en otras partes del mundo? ¿Cuál/es?
4. Puesta en común del trabajo realizado. Intercambio con los compañeros.
5. Planificar una secuencia de situaciones didácticas para trabajar este contenido en el grado o curso que desee.
AxT – P y S – 02: La enseñanza y el aprendizaje de las fracciones
Actividades:
1. Leer y analizar las siguientes diapositivas sobre la enseñanza y el aprendizaje de los números racionales positivos.
2. Analizar y resolver la siguiente situación problemática: Con un bidón de 15 litros de agua, ¿puedo llenar más vasos de ¼ litro o de 2/7 litro?
a) Escribir al menos tres estrategias distintas que podrían presentar los estudiantes de 1º año del Ciclo Básico, al resolver dicha situación.
b) ¿Qué sentido de las fracciones se trabaja en el problema? Justificar.
c) Diseñe dos situaciones problemáticas que trabajaría inmediatamente después de la anterior, indicando: objetivos, contenidos, organización de la clase, evaluación de los estudiantes.
AxT – P y S – 03: ¿Qué promoción me conviene?
Actividad:
Se realiza una propuesta para que los estudiantes sean capaces de relacionar la matemática, con situaciones de la vida cotidiana. Se pretende formar un ciudadano capaz de analizar la información que nos muestran diarios, revistas, Tv, etc.
Este trabajo se puede realizar en el Nivel Primario en los últimos años, y en el Nivel Secundario en los primeros años.
Para pensar...
1.Formar pequeños equipos (no más de 4 estudiantes) y observar la publicidad:
2.Resolver la situación planteada: ¿Qué promoción me conviene? ¿Por qué? (Se solicita a los alumnos que presenten en forma detallada la estrategia de resolución).
3.Cada equipo de estudiantes, validará su estrategia en el pizarrón. Se fomentará la discusión y confrontación de las distintas formas de resolución.
4.El docente institucionaliza el contenido matemático trabajado.
5.Se solicita a los estudiantes que realicen un breve comentario en este blog, debajo de esta actividad.
AxT – P y S – 04: ¿Reducir o convertir?
Introducción:
Se presenta un registro de una experiencia pedagógica sobre “El aprendizaje y la enseñanza de las mediciones en la formación docente inicial del Profesor de Matemática”
El principal objetivo que se proponen las docentes es indagar los conocimientos previos, obstáculos epistemológicos (“reducir”), para luego abordar la enseñanza de las Mediciones con sentido, que los estudiantes construyan y no que realicen “reducciones” mecánicamente y se limiten a realizar cálculos de perímetros, áreas y volúmenes aplicando fórmulas con poco significado. La construcción mental del concepto de medida es un proceso complejo, y transversal, teniendo en cuenta que en él convergen naturalmente el número, la geometría y el mundo físico.
Se presenta una propuesta que propicia un espacio donde los futuros docentes vivencian situaciones problemáticas que les permiten revisar y/o reconstruir los conocimientos previos.
Actividades:
1.Leer el registro de la experiencia pedagógica “¿Reducir o convertir?”, publicado en el Centro de Documentación del Instituto Nacional de Formación Docente (INFD) del Ministerio de Educación de la Nación, trabajo realizado por la Prof. María del Carmen Chiappero y Prof. María Alejandra Pellegrino con estudiantes de 3º año del Profesorado de Matemática, en el ciclo lectivo 2008.
2.Llevar al aula algunas de las situaciones didácticas propuestas u otras que Ud. considere significativas para la construcción de estos conocimientos.
3.Realizar un breve comentario de la experiencia.
AxT – P y S – 05: Educación y tecnologías en debate
Es imprescindible que tanto los estudiantes de carreras docentes, en su formación inicial, como los docentes en actividad, en su formación continua, tengan el hábito de reflexionar sobre sus propias prácticas docentes, adquiriendo capacidades para auto cuestionarse y repensar el camino transitado, con el objetivo de enriquecerlas.
Es por ello, que se propone analizar qué papel cumplen las Tecnologías de la Información y la Comunicación (TIC) en la educación en general y en las clases de matemática, en particular.
Para ello se invita a reflexionar teniendo en cuenta:
- Humor. Ministerio de Educación de la Nación. El Monitor de la Educación. Noviembre/Diciembre 2005. Pág. 12.
- Más humor. Gaturro.
- Graffiti: "Mientras haya docentes transmisores de conocimientos acabados, tengo esperanza de ser maestra". La Computadora
Autora: Prof. María del Carmen Chiappero
Premio: 2º Mención. Concurso: “Lo bueno, si breve dos veces bueno”- 50º Aniversario de U.E.P.C. Mayo 2003. - "Cirujanos y maestros en el siglo XXI". Paenza, Adrián. Matemática...¿estás ahí?. Siglo Veintiuno editores. Pág. 181.
- "El profesor ante las nuevas tecnologías de información y comunicación, NTIC.” Sandra Gómez Flores. Revista digital de educación y nuevas tecnologías, número 28, año V. 2003. Ver en http://contexto-educativo.com.ar/2003/4/nota-05.htm
- Video: ¿Internet y consolas, o tiza y pizarrón? En el mismo los más altos funcionarios educativos de Brasil, Argentina y Chile hablan sobre la brecha tecnológica en el aula. El Ministro Lic. Juan Carlos Tedesco expresa: "Se puede ser muy moderno con la tiza y muy tradicional con la computadora". "...“La tecnología reemplaza al trabajo humano en lo menos calificado. ¿Qué es lo menos calificado en la enseñanza? Transmitir datos. Eso lo pueden hacer las tecnologías." En: http://weblogs.clarin.com/camara-libre/archives/2008/09/internet_y_consolas_o_tiza_y_pizarron/
- Video: Aprendizaje digital. Portal educ ar. Webcreatividad. En él se muestra con suma claridad el presente que encontramos cada vez que entramos en el aula, pensando, tal vez, desde un paradigma totalmente diferente del de nuestros alumnos. ¿Cómo acortar distancias? Lo puedes ver en:
http://portal.educ.ar/debates/eid/webcreatividad/debate/el-presente-que-no-vemos-1.php o a continuación:
- Video: Tecnología y metodología que se puede ver a continuación.
- Video: Entrevista a Nicholes Burbules (parte II).
- Video: ¿Dónde está la competencia digital de los profesores? Conferencia de Jordi Ardell Segura.
I. Responder el Trabajo Práctico nº 5.
II. Participar en el foro.